# Identification of the Effective Palladium(0) Catalytic Species Generated in Situ from Mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}$ and Bidentate Phosphine Ligands. Determination of Their Rates and Mechanism in Oxidative Addition 

Christian Amatore, ${ }^{*}, \dagger$ Gregory Broeker, ${ }^{\dagger}$ Anny Jutand, ${ }^{*}{ }^{\boldsymbol{\dagger}}$ and Fouad Khalil ${ }^{*}$<br>Contribution from the Département de Chimie, Ecole Normale Supérieure, URA CNRS 1679, 24<br>Rue Lhomond, 75231 Paris Cedex 05, France, and Département de Chimie, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fes-Saiss, Morocco

Received October 24, $1996^{\otimes}$


#### Abstract

Mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L}$ (where L-L is a bidentate ligand such as dppm, dppe, dppp, dppb, dppf, and DIOP) lead to the formation of $\operatorname{Pd}(\mathrm{L}-\mathrm{L})_{2}$ complexes which do not undergo an oxidative addition with phenyl iodide. Mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}+2$ BINAP do not afford $\operatorname{Pd}(\operatorname{BINAP})_{2}$ but $\operatorname{Pd}(\mathrm{dba})(\mathrm{BINAP})$. Mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L}$ (L-L = dppm, dppe, dppp, dppb, dppf, DIOP, and BINAP) lead to Pd(dba)(L-L) complexes via the formation, at short time, of the complex $\operatorname{Pd}(\mathrm{L}-\mathrm{L})_{2}$, except for dppf and BINAP where the complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ is directly formed. $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ is the main complex in solution but is involved in an endergonic equilibrium with the less ligated complex $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ and dba. $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$ is the more reactive species in the oxidative addition with phenyl iodide. However, $\operatorname{Pd}(d b a)(\mathrm{L}-\mathrm{L})$ also reacts in parallel with phenyl iodide. From the kinetic data concerning the reactivity of these different catalytic systems in the oxidative addition with phenyl iodide, one observes the following order of reactivity: $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{DIOP}>\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{dppf} \gg \mathrm{Pd}(\mathrm{dba})_{2}+1$ BINAP. All these systems associated to one bidentate ligand are less reactive than $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PPh}_{3}$.


## Introduction

The complex $\operatorname{Pd}(0)(\mathrm{dba})_{2}(\mathrm{dba}=$ trans,trans-dibenzylideneacetone) associated with phosphine ligands is commonly used as a source of palladium(0) complexes. ${ }^{1-6}$ One can vary the phosphine ligand at will and thus test the reactivity of the resulting complexes in catalytic reactions. We reported a mechanistic investigation on the system $\mathrm{Pd}(0)(\mathrm{dba})_{2}+n \mathrm{PPh}_{3}$ ( $n \geq 2$ ). The following mechanism was established on the basis of ${ }^{31} \mathrm{P}$ NMR spectroscopy and voltammetry: ${ }^{2}$

$$
\begin{gathered}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba} \\
\mathrm{Pd}(\mathrm{dba})+2 \mathrm{PPh}_{3} \rightarrow \mathrm{Pd}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)_{2} \\
\mathrm{Pd}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)_{2} \leftrightarrow \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{dba} \quad\left(K_{1}\right) \\
\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{PPh}_{3} \leftrightarrow \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3} \quad\left(K_{2}\right)
\end{gathered}
$$

Since $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ is present only as a transient species in endergonic equilibrium state, it was advisable to consider the overall equilibrium:

$$
\mathrm{Pd}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{PPh}_{3} \leftrightarrow \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{3}+\mathrm{dba} \quad\left(K_{0}\right)
$$

[^0]The value of the equilibrium constant $K_{0}=K_{1} K_{2}=0.14$ was determined in THF. ${ }^{2}$ From this value, we concluded that dba is a better ligand for $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ than $\mathrm{PPh}_{3}$, and it was established that dba is not very labile as usually admitted, since the deligation of the second dba ligand requires at least 8 equiv of

[^1]Table 1. ${ }^{31} \mathrm{P}$ NMR Chemical Shifts ${ }^{a}$ of Palladium(0) Complexes Generated in the Mixture $\operatorname{Pd}(\mathrm{dba})_{2}+n \mathrm{~L}-\mathrm{L}(n=1$ or 2$)$ and of the Complexes $\operatorname{PhPdI}(\mathrm{L}-\mathrm{L})$ Resulting from the Oxidative Addition with $\operatorname{PhI}(n=1)$, in THF

|  | L-L | $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L} \rightarrow \mathrm{Pd}(\mathrm{L}-\mathrm{L})_{2}$ | $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L} \rightarrow \mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ |  | PhPdI(L-L) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L-L | $\delta_{0}$ | $\delta_{1}$ | $\delta_{2}$ | $\delta_{3}$ | $\delta_{4}$ | $\delta_{5}$ |
| dppm | -10.12 | 13.30 | 19.70 | 21.28 | 10.50 | 13.56 |
| dppe | -12.61 | 30.46 | 34.41 | 36.63 | 33.82 | 49.11 |
| dppp | -17.41 | 3.95 | 8.35 | 13.44 | -9.85 | 10.82 |
| dppb | -16.18 | 27.81 | 17.46 | 21.28 | 14.73 | 15.46 |
| dppf | -16.96 | 25.91 | 17.95 (d) ( $J_{\text {PP }}=9 \mathrm{~Hz}$ ) | 19.83 (d) ( $J_{\text {PP }}=9 \mathrm{~Hz}$ ) | 7.64 (d) ( $J_{\text {PP }}=34 \mathrm{~Hz}$ ) | 25.65 (d) ( $J_{\text {PP }}=34 \mathrm{~Hz}$ ) |
| DIOP | -22.39 | -0.75 | 7.25 | 9.46 | -4.94 (d) ( $\left.J_{\text {PP }}=45 \mathrm{~Hz}\right)$ | 11.68 (d) ( $\left.J_{\text {PP }}=45 \mathrm{~Hz}\right)$ |
| BINAP | $-15.30$ | n.o. ${ }^{\text {b }}$ | $25.63{ }^{\text {c }}$ | $26.86{ }^{\text {c }}$ | 9.08 (d) ( $\left.J_{\text {PP }}=40 \mathrm{~Hz}\right)$ | $22.289 \mathrm{~d})\left(J_{\text {PP }}=40 \mathrm{~Hz}\right)$ |

${ }^{a}$ Determined vs $\mathrm{H}_{3} \mathrm{PO}_{4}$ at $40{ }^{\circ} \mathrm{C} .{ }^{b}$ n.o. $=$ not observed. ${ }^{c}$ One single broad signal was observed at 27.03 ppm at $80{ }^{\circ} \mathrm{C}$.
$\mathrm{PPh}_{3} .{ }^{7}$ The reactive species in oxidative addition with PhI was the less ligated 14-electron complex $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$.

$$
\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{PhI} \rightarrow \operatorname{PhPdI}\left(\mathrm{PPh}_{3}\right)_{2}
$$

This species is faced to two equilibria, and its concentration is lower than when, e.g., $\operatorname{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{4}$ is used at the same concentration. This explains why, in contradiction with the common belief, mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}$ and triphenylphosphine are less reactive vis à vis oxidative addition than $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4} .{ }^{2}$

The catalytic systems $\operatorname{Pd}(0)(\mathrm{dba})_{2}+\mathrm{L}-\mathrm{L}$, where $\mathrm{L}-\mathrm{L}$ is a bidentate phosphine ligand, ${ }^{3-6}$ are of great interest because some ligands are chiral chelating diphosphines (DIOP, ${ }^{4,5}$ BINAP, ${ }^{5,6}$ etc.) and thus may cause asymmetric induction. In this respect, it is of the utmost importance to know the nature of the zerovalent palladium species which undergoes the oxidative addition. This information might indeed be crucial for the rationalization of the chiral induction when the substrate undergoing oxidative addition is chiral at the center of oxidative addition. We report here the first kinetic results concerning the structure and reactivity in oxidative addition of the palladium( 0 ) complexes generated in situ in mixtures of $\operatorname{Pd}(0)(\mathrm{dba})_{2}$ and bidentate ligands such as DIOP, dppf, and BINAP. ${ }^{8}$ Main attention was given to


DIOP

dppf


BINAP
chiral chelating diphosphines such as DIOP and BINAP. The oxidative addition of the related palladium(0) complex are investigated with phenyl iodide. Although phenyl iodide does not present any chiral center, the resulting phenylpalladium complex will be chiral and might play a role in enantioselective inductions such as in Heck reactions. Phenyl iodide was chosen as a model molecule because, on the one hand, it will allow the characterization of the different complexes involved in the oxidative addition and, on the other hand, the results could be compared with our previous works on the reactivity of other commonly used palladium(0) complexes in oxidative additions. ${ }^{2,9,10}$ Despite the fact that phenyl iodide is not chiral, it allows (i) the existence of two palladium( 0 ) catalytic centers

[^2]and (ii) their dynamics to be characterized. These features relative to the palladium(0) catalyst are expected to play a similar role with any other organic derivative in particular when the latter is chiral.

## Results and Discussion

I. Identification of the Palladium(0) Complexes Formed in situ by Mixture of $\operatorname{Pd}(\mathbf{d b a})_{2}$ and Bidentate Phosphine Ligands in THF, As Investigated by ${ }^{31} P$ NMR Spectroscopy and Cyclic Voltammetry. (a) Pd(dba) $)_{2}+2$ DIOP with ( + )DIOP $=(4 S, 5 S)-(+)-O$-Isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane. ${ }^{31} \mathrm{P}$ NMR spectroscopy was performed on a solution of $\mathrm{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})$ with 2 equiv of DIOP in 3 mL of THF. The ${ }^{31} \mathrm{P}$ NMR spectrum exhibited a single signal at $\delta_{1}=-0.75 \mathrm{ppm}$ characteristic of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ (Figure 1a, Table 1). ${ }^{11}$ The free ligand at $\delta_{0}=-22.39 \mathrm{ppm}$ was not detected, and thus, the formation of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ is a fast and quantitative reaction.

$$
\begin{equation*}
\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{DIOP} \rightarrow \mathrm{Pd}(\mathrm{DIOP})_{2}+2 \mathrm{dba} \tag{1}
\end{equation*}
$$

The signal at $\delta_{1}$ was still observed in the presence of 1000 equiv of phenyl iodide, after 2 h , demonstrating that the oxidative addition to the 18 -electron $\mathrm{Pd}(\mathrm{DIOP})_{2}$ did not take place.

$$
\mathrm{Pd}(\mathrm{DIOP})_{2}+\mathrm{PhI} \nrightarrow \ldots
$$

These results were confirmed by cyclic voltammetry. As we already reported, ${ }^{2}$ the cyclic voltammetry of $\operatorname{Pd}(\mathrm{dba})_{2}$ exhibited one oxidation peak $\mathrm{O}_{0}$ at $E^{\mathrm{p}}=+1.26 \mathrm{~V}$ (Figure 2a) and three reduction peaks (Figure 2b). The first reversible one at $E^{p}\left(\mathrm{R}_{0}\right)$ $=-0.93 \mathrm{~V}$ characterizes the reduction of $\operatorname{Pd}(\mathrm{dba})$; the two others at $E^{\mathrm{p}}\left(\mathrm{R}_{1}\right)=-1.29 \mathrm{~V}$ (reversible) and $E^{\mathrm{p}}\left(\mathrm{R}_{2}\right)=-2.00$ V (irreversible) characterize the two successive 1-electron reductions of dba, released in reaction 2 , as previously estab-

$$
\begin{equation*}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba} \tag{2}
\end{equation*}
$$

lished. ${ }^{2}$ When 2 equiv of DIOP was added to a solution of $\mathrm{Pd}(\mathrm{dba})_{2}, 2 \mathrm{mM}$ in THF, the peak $\mathrm{R}_{0}$ was no longer observed whereas the two reduction peaks of the ligand dba were present at $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ (Figure 2b).

Both reduction peak currents were doubled with respect to the above experiment in the absence of DIOP. The reaction of $\mathrm{Pd}(\mathrm{dba})_{2}$ with 2DIOP thus released 2 dba in solution according to reaction $1 .{ }^{12}$ The oxidative section of the voltammograms showed that the oxidation peak $\mathrm{O}_{0}$ of $\mathrm{Pd}(\mathrm{dba})$ disappeared

[^3]

Figure 1. ${ }^{31} \mathrm{P}$ NMR spectrum ( 162 MHz ) performed in 3 mL of THF and 0.2 mL of acetone- $d_{6}$ with $\mathrm{H}_{3} \mathrm{PO}_{4}$ as an external reference: (a) $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})+2 \mathrm{DIOP},(\mathrm{b}) \mathrm{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})+1$ DIOP after 10 $\min$, (c) $\operatorname{Pd}(d b a)_{2}(14 \mathrm{mM})+1$ DIOP after 4 h , (d) $\mathrm{PhPdI}(D I O P)$ after addition of 100 equiv of PhI to (c), (e) $\mathrm{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})+\mathrm{Pd}(\mathrm{DIOP})_{2}$ $(14 \mathrm{mM})$ generated in situ from a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})+$ 2DIOP as in (a).


Figure 2. Cyclic voltammetry performed in THF ( $n$ - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}, 0.3 \mathrm{M}$ ) at a stationary gold disk electrode ( 0.5 mm diameter) with a scan rate of $0.2 \mathrm{~V} \mathrm{~s}^{-1}$ : (a) (一) oxidation of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM}),(--)$ oxidation of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+2 \mathrm{DIOP},(\mathrm{b})(-)$ reduction of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})$, $(-\cdot-)$ reduction of $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+2$ DIOP.
whereas two new oxidation peaks were observed at $E^{\mathrm{p}}\left(\mathrm{O}_{1}\right)=$ +0.33 V and $E^{\mathrm{p}}\left(\mathrm{O}^{\prime}{ }_{1}\right)=+0.19 \mathrm{~V}$ (Figure 2a, Table 2). Addition of more than 2 equiv of DIOP did not modify the voltammograms of the system, neither in oxidation nor in reduction. Therefore, the complex $\mathrm{Pd}(\mathrm{DIOP})_{2}$ is quantitatively formed in situ from a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}$ with 2 equiv of DIOP. It is characterized by two oxidation peaks, $\mathrm{O}_{1}$ and $\mathrm{O}_{1}^{\prime}$, whose magnitudes were equal when the voltammetry was performed at a rotating disk electrode. This shows that the oxidation of $\mathrm{Pd}(\text { DIOP })_{2}$ involves two successive 1 -electron transfers. These two oxidation peaks still remained unchanged in the presence of 1000 equiv of PhI , confirming our above observations in ${ }^{31} \mathrm{P}$ NMR spectroscopy, viz., that $\operatorname{Pd}(\mathrm{DIOP})_{2}$ does not react with phenyl iodide.
(b) $\operatorname{Pd}(\mathbf{d b a})_{2}+\mathbf{1 D I O P}$. The ${ }^{31} \mathrm{P}$ NMR spectrum of a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})$ with 1 equiv of DIOP exhibited after 10 min three signals (Figure 1b, Table 1): one single signal at $\delta_{1}$ $=-0.75 \mathrm{ppm}$ which is characteristic of $\mathrm{Pd}(\mathrm{DIOP})_{2}$, as established above, and two signals of equal magnitude at $\delta_{2}=$ +7.25 ppm and $\delta_{3}=+9.46 \mathrm{ppm}$ whose structure suggests two doublets. However, the signals were too broad $\left(\Delta v_{1 / 2}=60\right.$ Hz ) to allow the determination of any coupling constant $J_{\mathrm{pp}}$. The system changed as a function of time. After 4 h , the signal of $\operatorname{Pd}(\mathrm{DIOP})_{2}$ had disappeared. The two signals at $\delta_{2}$ and $\delta_{3}$ only remained present (Figure 1c). They disappeared after addition of 100 equiv of PhI , and two new doublets were detected at $\delta_{4}=-4.94 \mathrm{ppm}$ and $\delta_{5}=11.68 \mathrm{ppm}\left(J_{\mathrm{pp}}=45\right.$

Table 2. Oxidation Peak Potentials ${ }^{a}$ of the Palladium(0) Complexes Generated in the Mixture $\operatorname{Pd}(\mathrm{dba})_{2}+n \mathrm{~L}-\mathrm{L}(n=1$ or 2$)$ in THF

| L-L | $\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L} \rightarrow \\ \mathrm{Pd}(\mathrm{~L}-\mathrm{L})_{2} \quad E_{\mathrm{E}_{\mathrm{Ox}}}\left(\mathrm{O}_{1}\right) \end{gathered}$ | $\begin{gathered} \operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L} \rightarrow \\ \operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L}) \quad E_{\mathrm{Ox}}^{\mathrm{p}}\left(\mathrm{O}_{2}\right) \end{gathered}$ | L-L | $\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L} \rightarrow \\ \mathrm{Pd}(\mathrm{~L}-\mathrm{L})_{2} \quad E_{\mathrm{O}_{\mathrm{Ox}}}\left(\mathrm{O}_{1}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L} \rightarrow \\ \mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L}) E_{\mathrm{Ox}}^{\mathrm{p}}\left(\mathrm{O}_{2}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| dppe | -0.31 | +0.42 | DIOP | $+0.19,+0.33^{c}$ | +0.66 |
| dppf | +0.88 | $+0.68{ }^{\text {b }}$ | BINAP | n.o. ${ }^{\text {d }}$ | +0.52 |

${ }^{a}$ Oxidation peak potentials are relative to the SCE electrode. They were determined at a gold disk electrode with a scan rate of $0.2 \mathrm{~V} \mathrm{~s}{ }^{-1}$ at 20 ${ }^{\circ} \mathrm{C} .{ }^{b}$ A second reversible oxidation peak was observed at $+1.27 \mathrm{~V} .{ }^{c}$ Two oxidation peaks were detected; see the text. ${ }^{d}$ n.o. $=$ not observed.

Hz ) characteristic of $\mathrm{PhPdI}(\mathrm{DIOP})$ (Figure 1d). ${ }^{13}$ This means that a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}+1$ DIOP afforded at short times the complex $\mathrm{Pd}(\mathrm{DIOP})_{2}$, while at long times, a new complex was formed in which the two phosphorous atoms are not equivalent. This latter reacts with PhI while the former does not. The structure of the reactive complex is compatible with the formula $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$, in which monoligation of dba makes the two phosphorous atoms of DIOP not equivalent:

$\mathrm{P}-\mathrm{X}-\mathrm{P}$ symbolizes the DIOP ligand. The same monoligation of dba was observed for the complex $\operatorname{Pd}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)_{2} .{ }^{2}$

When $\operatorname{Pd}(\mathrm{dba})_{2}$ was added to a solution of $\mathrm{Pd}(\mathrm{DIOP})_{2}$, previously generated in situ from the mixture of $\operatorname{Pd}(d b a)_{2}$ and 2DIOP, i.e., in the presence also of free dba (1 equiv per palladium), the two doublets characteristic of $\mathrm{Pd}(\mathrm{dba})$ (DIOP) appeared in the ${ }^{31} \mathrm{P}$ NMR spectrum (Figure 1e), demonstrating that a reaction occurred between $\mathrm{Pd}(\mathrm{DIOP})_{2}$ and $\mathrm{Pd}(\mathrm{dba})_{2}$ to yield $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$. Surprisingly, addition of dba only (i.e., without $\mathrm{Pd}(\mathrm{dba})_{2}$ ) to the solution of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ did not modify its ${ }^{31} \mathrm{P}$ NMR spectrum.

To delineate the kinetic evolution of the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+$ 1DIOP, cyclic voltammetry was performed as a function of time. In the presence of 1 equiv of DIOP per $\mathrm{Pd}(\mathrm{dba})_{2}$, after 5 min (as required for preparation of the cyclic voltammetry experiment), the oxidation current of $\operatorname{Pd}(\mathrm{dba})$ at $\mathrm{O}_{0}$ was half of its initial value (Figure 3a) and the current magnitudes of the two oxidation peaks $\mathrm{O}_{1}$ and $\mathrm{O}^{\prime}{ }_{1}$, representative of $\mathrm{Pd}(\mathrm{DIOP})_{2}$, were half of their values measured for $\operatorname{Pd}(\mathrm{DIOP})_{2}$ formed in situ in the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{DIOP}$ (compare Figures 2a and 3a). Therefore, a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}+1$ DIOP rapidly $\left(t_{1 / 2}<5\right.$ $\mathrm{min})$ afforded $(1 / 2) \mathrm{Pd}(\mathrm{DIOP})_{2}$ and $(1 / 2) \mathrm{Pd}(\mathrm{dba})$.

Evolution as a function of time showed that the oxidation peak of $\mathrm{Pd}(\mathrm{dba})$ slowly disappeared concomitantly with the disappearance of the oxidation peaks $\mathrm{O}_{1}$ and $\mathrm{O}_{1}^{\prime}$ of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ (Figure 3a). A new oxidation peak $\mathrm{O}_{2}$ was detected at $E_{\mathrm{p}}\left(\mathrm{O}_{2}\right)$ $=+0.66 \mathrm{~V}$ and its magnitude increased concomitantly with the disappearance of $\mathrm{O}_{1}$ and $\mathrm{O}_{1}^{\prime}$ (Figure 3a). Peak $\mathrm{O}_{2}$ was assigned to $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ on the basis of the ${ }^{31} \mathrm{P}$ NMR investigations (see above). After 4 h , the only oxidation peak detected was $\mathrm{O}_{2}$, featuring the presence of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ only (Figure 3a). This oxidation peak disappeared in the presence of 50 equiv of

[^4]

Figure 3. Cyclic voltammetry performed in THF $\left(n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}, 0.3 \mathrm{M}\right)$ at a stationary gold disk electrode ( 0.5 mm diameter) with a scan rate of $0.2 \mathrm{~V} \mathrm{~s}^{-1}$ : (a) (一) oxidation of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM}),(--)$ oxidation of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1$ DIOP after $5 \mathrm{~min},(-\cdot-)$ after 2 h , and $(-\cdot-)$ after 4 h , (b) (---) oxidation of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1 \mathrm{DIOP}$ after 4 h , $(-)\left\{\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1 \mathrm{DIOP}\right.$ after 4 h$\}+50 \mathrm{PhI}$, oxidation of $\mathrm{PhPdI}(\mathrm{DIOP})$, $(\mathrm{c})(-)$ reduction of $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM}),(---)$ reduction of $\operatorname{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1$ DIOP after 10 min and $(-\cdot-)$ after 4 h .

PhI and was replaced by a new oxidation peak, $\mathrm{O}_{3}$, at +0.90 V , which characterized the complex $\mathrm{PhPdI}(\mathrm{DIOP})$ resulting from the oxidative addition (Figure 3b).

The same overall reactivity was observed through the reductive side of the cyclic voltammogram. Thus, in mixtures of $\mathrm{Pd}(\mathrm{dba})_{2}+1$ DIOP, the reduction peak $\mathrm{R}_{0}$ was still detected after 10 min , yet its magnitude was half of the initial one (Figure 3c). One also observed that the reduction peak currents of the free dba were multiplied by approximately $3 / 2$ when compared to their initial values. Therefore, a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}+$ 1DIOP rapidly $\left(t_{1 / 2}<5 \mathrm{~min}\right)$ afforded (1/2) $\operatorname{Pd}(\mathrm{DIOP})_{2}$ and (3/ 2)dba. One then observed a decay of the reduction peaks of dba as a function of time, up to a final value corresponding to

1 equiv per palladium (Figure 3c). The reduction peak of Pd (dba)(DIOP) was also observed at $\mathrm{R}_{3}(-1.60 \mathrm{~V})$, corresponding to the reduction of the dba ligand ligated to the palladium(0) center.

On the basis of these observations, the following mechanism is proposed:

$$
\begin{equation*}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba} \tag{2}
\end{equation*}
$$

$$
\mathrm{Pd}(\mathrm{dba})+1 \mathrm{DIOP} \rightarrow(1 / 2) \operatorname{Pd}(\mathrm{dba})+(1 / 2) \operatorname{Pd}(\mathrm{DIOP})_{2}+
$$

(1/2)dba (fast)

$$
\begin{align*}
&(1 / 2) \mathrm{Pd}(\mathrm{dba})+(1 / 2) \mathrm{Pd}(\mathrm{DIOP})_{2}+(1 / 2) \mathrm{dba} \rightarrow \\
& \mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})  \tag{4}\\
& \text { (slow) }  \tag{5}\\
& \mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})+\mathrm{PhI} \rightarrow \mathrm{PhPd}(\mathrm{DIOP})+\mathrm{dba}
\end{align*}
$$

Therefore, $1 / 2$ equiv of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ is rapidly formed (eq 3) which then reacts slowly with $1 / 2$ equiv of $\operatorname{Pd}(\mathrm{dba})^{14}$ to form $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ which reacts with PhI . In the mixture $\mathrm{Pd}(\mathrm{dba})_{2}$ +2 DIOP , the unreactive $\mathrm{Pd}(\mathrm{DIOP})_{2}$ only is formed.

$$
\begin{gather*}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba}  \tag{2}\\
\mathrm{Pd}(\mathrm{dba})+2 \mathrm{DIOP} \rightarrow \mathrm{Pd}(\mathrm{DIOP})_{2}+\mathrm{dba}  \tag{6}\\
\mathrm{Pd}(\mathrm{DIOP})_{2}+\mathrm{PhI} \nrightarrow \ldots
\end{gather*}
$$

(c) $\operatorname{Pd}(\mathbf{d b a})_{2}+n L-L(n=1$ or 2$)$ with $L-L=d p p m, ~ d p p e, ~$ dppp, and dppb. Irrespective to the exact nature of the bidentate ligand (dppm, dppe, dppp, and dppb), reactions similar to those for DIOP were observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy and cyclic voltammetry. The complex $\mathrm{Pd}(\mathrm{L}-\mathrm{L})_{2}$ was formed from the mixture $\operatorname{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L}$. It did not react with phenyl iodide. ${ }^{15}$ The complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ was formed at longer times from the mixture of $\operatorname{Pd}(d b a)_{2}+1 \mathrm{~L}-\mathrm{L}$ via the complex $\operatorname{Pd}(\mathrm{L}-$ $\mathrm{L})_{2}$ as observed above for DIOP. ${ }^{16} \mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ reacted with PhI to afford $\operatorname{PhPdI}(\mathrm{L}-\mathrm{L})$. The ${ }^{31} \mathrm{P}$ NMR signals of the different complexes are gathered in Table 1. Herrmann et al. ${ }^{17}$ also reported that complexes $\operatorname{Pd}(\mathrm{dba})(\mathrm{dppe})$ and $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppp})$ have been isolated from mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}$ and 1 dppe or 1 dppp . The X-ray structure of $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppe})^{17 \mathrm{a}}$ confirms that the two phosphorous atoms are not equivalent because of a monoligation of dba in $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ as postulated above for $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$.
(d) $\operatorname{Pd}(\text { dba })_{2}+n$ BINAP $(n=1$ or 2$)$ with BINAP $=(S)$ -(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl. The ${ }^{31} \mathrm{P}$ NMR spectrum of a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})+1$ BINAP exhibited at short times ( 10 min ) two signals $\delta_{2}$ and $\delta_{3}$

[^5]characteristic of $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ together with some free BINAP ligand (Table 1). After 4 h , the free ligand had disappeared and only $\operatorname{Pd}(\mathrm{dba})(\mathrm{BINAP})$ was observed which shows that the ligation of $\operatorname{Pd}(\mathrm{dba})$ by BINAP is a slow reaction. The two ${ }^{31} \mathrm{P}$ NMR signals $\delta_{2}$ and $\delta_{3}$ of $\operatorname{Pd}(\mathrm{dba})(\mathrm{BINAP})$ were broad ( $\Delta \nu_{1 / 2}=60 \mathrm{~Hz}$ ), and increasing the temperature at 80 ${ }^{\circ} \mathrm{C}$ resulted in a coalescence of the two signals (Table 1), indicating either a deligation of dba or a fast scrambling of dba around the palladium center. Addition of 100 equiv of PhI to the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$ (after complete formation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ ) resulted in the formation of $\mathrm{PhPdI}(\mathrm{BINAP})$ characterized by its ${ }^{31} \mathrm{P}$ NMR spectrum (Table 1 ). ${ }^{18}$

The ${ }^{31} \mathrm{P}$ NMR spectrum of a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}(14 \mathrm{mM})$ + 2BINAP exhibited, after 4 h , the two signals characteristic of $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ (Table 1) and the signal of the free BINAP ligand, at -15.30 ppm . Addition of a large excess of BINAP (10 equiv per palladium) did not modify the signals of $\operatorname{Pd}(\mathrm{dba})$ (BINAP), and no singlet was detected that could be characterized as $\operatorname{Pd}(\mathrm{BINAP})_{2}{ }^{19 \mathrm{a}}$ under our experimental conditions (one night at $40^{\circ} \mathrm{C}$ ). When the mixture $\operatorname{Pd}(\mathrm{dba})_{2}+n \operatorname{BINAP}(n=1$ or 2$)$ was investigated by cyclic voltammetry, the oxidative and reductive voltammograms remained identical whatever the value of $n$. Only one oxidation peak, $\mathrm{O}_{2}$, characteristic of $\mathrm{Pd}(\mathrm{dba})$ (BINAP), was observed (Table 2). The reductive voltammogram exhibited the two reduction peaks of dba. From the value of the reduction peak current of the first reduction peak, we concluded that only 1 equiv of dba per palladium was released in solution even when $n=2$. The electrochemical investigation thus confirmed that the complex $\operatorname{Pd}(\mathrm{BINAP})_{2}$ was never formed from a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}$ and 2BINAP, under our experimental conditions. Thus, the following mechanism was established:

$$
\begin{gather*}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba}  \tag{2}\\
\mathrm{Pd}(\mathrm{dba})+1 \mathrm{BINAP} \rightarrow \mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})  \tag{7}\\
\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})+\mathrm{PhI} \rightarrow \mathrm{PhPdI}(\mathrm{BINAP})+\mathrm{dba}  \tag{8}\\
\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})+1 \mathrm{BINAP} \nrightarrow \mathrm{Pd}(\mathrm{BINAP})_{2}+\mathrm{dba}
\end{gather*}
$$

Therefore, mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}+2$ BINAP behave differently from those involving the other ligands investigated here, in the sense that the main species is always $\mathrm{Pd}(\mathrm{dba})$ (BINAP) and that the complex $\operatorname{Pd}(\operatorname{BINAP})_{2}$ could not be observed. From this we conclude that dba is a better ligand for the $\operatorname{Pd}(B I N A P)$ moiety than BINAP, even for a BINAP/dba ratio of $10 / 1 .{ }^{20}$

The complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{BINAP})^{19 b}$ was isolated in $86 \%$ yield, as an orange powder, from a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$ in toluene and was characterized by cyclic voltammetry ( $E^{\mathrm{p}}$ $\left(\mathrm{O}_{1}\right)=+0.51 \mathrm{~V}$ ) and ${ }^{31} \mathrm{P}$ NMR spectroscopy $\left(\delta_{2}=25.64 \mathrm{ppm}\right.$ and $\left.\delta_{3}=26.84 \mathrm{ppm}\right)$. Thus, the isolated complex $\operatorname{Pd}(\mathrm{dba})$ (BINAP) has the same physical properties as the complex generated in situ in the mixture of $\operatorname{Pd}(\mathrm{dba})_{2}+1$ BINAP (see Tables 1 and 2).
(e) $\operatorname{Pd}(\mathrm{dba})_{2}+n d p p f(n=1$ or 2$)$ with $\mathbf{d p p f}=1,1^{\prime}$-Bis(diphenylphosphino)ferrocene. The complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{dppf})$

[^6]

Figure 4. Kinetics of the oxidative addition of PhI with the palladium( 0 ) complex generated in situ in the mixture of $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1 \mathrm{DIOP}$ in THF, at $40^{\circ} \mathrm{C}$ : (a) variation of $\ln \left(i_{0} / i\right)(i=$ oxidation plateau current at $0.60 \mathrm{~V} v s$ SCE, at a rotating gold disk electrode ( 2 mm diameter, $\omega=$ $\left.105 \mathrm{rad} \mathrm{s}^{-1}\right)$ ) as a function of time, in the presence of $\operatorname{PhI}\left[(+) 0.4 \mathrm{M},()^{2} 0.2 \mathrm{M},(\mathrm{O}) 0.1 \mathrm{M},() 0.05 \mathrm{M}\right]$, (b) Variation of $k_{\text {app }}$ (slope of the straight lines in Figure 4a) as a function of the concentration of PhI.
was instantly formed in THF from a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}+$ $1 d p p f$ (for its characterization, see Tables 1 and 2). $\operatorname{Pd}(\mathrm{dba})-$ (dppf) was isolated as a yellow powder in $96 \%$ yield, according to the procedure employed for the synthesis of $\operatorname{Pd}(\mathrm{dba})(\mathrm{dppe}),{ }^{17}$ using toluene as solvent. The isolated complex posesses the same physical properties as the complex generated in situ in THF, from the mixture of $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{dppf}$. Their ${ }^{31} \mathrm{P}$ NMR spectra were identical and their oxidation peaks located at the same potential (Tables 1 and 2). The complex $\operatorname{Pd}(\mathrm{dppf})_{2}$ was formed from a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}+2 \mathrm{dppf}$, by a slow reaction (the oxidation peak of $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})$ completely disappeared after 22 h ) while 2 equiv of dba was released into the solution. The complex $\operatorname{Pd}(\mathrm{dppf})_{2}$ precipitated out of the solution and was isolated. Its physical properties $\left({ }^{31} \mathrm{P}\right.$ NMR data and oxidation potential in Tables 1 and 2) were identical to those of an authentic sample synthesized by reduction of $\mathrm{PdCl}_{2}$ (dppf) in the presence of $1 \mathrm{dppf} .{ }^{21} \mathrm{Pd}(\mathrm{dppf})_{2}$ did not react with PhI.

$$
\begin{gather*}
\mathrm{Pd}(\mathrm{dba})_{2} \rightarrow \mathrm{Pd}(\mathrm{dba})+\mathrm{dba}  \tag{2}\\
\mathrm{Pd}(\mathrm{dba})+1 \mathrm{dppf} \rightarrow \mathrm{Pd}(\mathrm{dba})(\mathrm{dppf}) \quad(\mathrm{fast})  \tag{9}\\
\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})+\mathrm{PhI} \rightarrow \mathrm{PhPdI}(\mathrm{dppf})+\mathrm{dba}  \tag{10}\\
\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})+1 \mathrm{dppf} \rightarrow \mathrm{Pd}(\mathrm{dppf})_{2}+\mathrm{dba} \quad(\text { slow })  \tag{11}\\
\mathrm{Pd}(\mathrm{dppf})_{2}+\mathrm{PhI} \nrightarrow \ldots
\end{gather*}
$$

## II. Rate and Mechanism of the Oxidative Addition of PhI

 with the Palladium(0) Complexes Generated in Situ in the Mixture of $\operatorname{Pd}(\mathbf{d b a})_{2}+1$ Bidentate Phosphine Ligand, in THF. Since mixtures of $\operatorname{Pd}(\mathrm{dba})_{2}$ and 2 equiv of L-L afforded the complex $\operatorname{Pd}(\mathrm{L}-\mathrm{L})_{2}$ (except for BINAP), which did not react with phenyl iodide, only the reactivity of the complex $\mathrm{Pd}(\mathrm{dba})-$ $(\mathrm{L}-\mathrm{L})$ generated in situ from the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L}$ presents some interest from a synthetic point of view. ${ }^{22}$ We observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy and cyclic voltammetry that[^7]complexes $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ reacted with phenyl iodide to yield PhPdI(L-L). However, this does not establish that Pd(dba)(LL ) itself was the reactive species. Indeed, the oxidative addition could proceed via another more reactive palladium(0) complex ${ }^{23}$ involved in an endergonic equilibrium with $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ and thus present at such a low concentration that it could not be detected, neither by ${ }^{31} \mathrm{P}$ NMR spectroscopy nor by cyclic voltammetry.
(a) $\mathbf{P d}(\mathbf{d b a})_{2}+\mathbf{1 D I O P}$. The detailed mechanistic investigation for the oxidative addition with PhI is described hereafter in the case of the mixture $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1 \mathrm{DIOP}$, in THF at $40{ }^{\circ} \mathrm{C}$. After evolution of this mixture to the complete formation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ at $20^{\circ} \mathrm{C}$ (monitored by cyclic voltammetry; see section Ib), the single oxidation peak of Pd(dba)(DIOP) was detected at +0.66 V . The kinetics of the oxidative addition was then monitored by amperometry at a rotating disk electrode, at $40^{\circ} \mathrm{C}$. The electrode potential was set at +0.6 V , i.e., near the plateau of the oxidation wave of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$. The decay of the anodic current $i$ was then monitored as a function of time, after addition of an excess of PhI.

Typical plots of $\ln \left(i_{0} / i\right)\left(i_{0}=\right.$ initial oxidation current, $i=$ oxidation current at $t$ ) as a function of time and for different concentrations of PhI are represented in Figure 4a. These plots are linear, showing that the reaction order in palladium $(0)$ is 1 . The slope $k_{\text {app }}$ of the straight lines was plotted as a function of the concentration of PhI (Figure 4b). The variation is linear, but surprisingly, the regression line does not pass through the origin:

$$
\begin{equation*}
k_{\mathrm{app}}\left(\mathrm{~s}^{-1}\right)=0.0075+0.06[\mathrm{PhI}] \tag{12}
\end{equation*}
$$

showing that the reaction order in PhI differs from 1. Indeed were $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$ to react with phenyl iodide according to the reaction

$$
\begin{equation*}
\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})+\mathrm{PhI} \xrightarrow{k} \mathrm{PhPdI}(\mathrm{DIOP})+\mathrm{dba} \tag{13}
\end{equation*}
$$

the plot of the variation of $\ln \left(i_{0} / i\right)$ as a function of time should
(23) Starting from $\mathrm{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{4}$, it was established that the major species was $\mathrm{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{3}$ involved in an endergonic equilibrium with $\mathrm{PPh}_{3}$ and the reactive complex $\mathrm{Pd}(0)\left(\mathrm{PPh}_{3}\right)_{2}$. See: Fauvarque, J. F.; Pflüger, F. Troupel, M. J. Organomet. Chem. 1981, 208, 419.


Figure 5. Kinetics of the oxidative addition of PhI with the palladium $(0)$ complex generated in situ in the mixture of $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{mM})+1 \mathrm{DIOP}$ in THF, at $40^{\circ} \mathrm{C}$ : (a) variation of $\ln \left(i_{0} / i\right)(i=$ oxidation plateau current at $+0.60 \mathrm{~V} v s$ SCE, at a rotating gold disk electrode ( 2 mm diameter, $\omega$ $\left.=105 \mathrm{rad} \mathrm{s}^{-1}\right)$ ) as a function of time, in the presence of $\mathrm{PhI}(0.4 \mathrm{M})$ and various concentrations of dba $[(+) 0 \mathrm{M},(-) 0.02 \mathrm{M},(\mathrm{O}) 0.04 \mathrm{M}]$, (b) variation of $1 /\left(k_{\mathrm{app}}-k_{0}[\mathrm{PhI}]\right)$ as a function of the ratio [dba]/[PhI].
obey the following law:

$$
\begin{equation*}
\ln \left(i_{0} / i\right)=k[\mathrm{PhI}] t=k_{\mathrm{app}} t \text { with } k_{\mathrm{app}}=k[\mathrm{PhI}] \tag{14}
\end{equation*}
$$

The same kinetic investigations were undertaken in the presence of various amounts of dba, added to the solution of $\mathrm{Pd}(\mathrm{dba})-$ (DIOP). Typical plots of the variations of $\ln \left(i_{0} / i\right)$ as a function of time, for different concentrations in dba, are shown in Figure 5a. Straight lines were again obtained, and their slopes $k_{\text {app }}$ were found to be smaller and smaller when the concentration of dba increased. Thus, the presence of extra dba slows the overall rate of the oxidative addition in contradiction with the usual belief. This implies that dba is involved in a fast equilibrium with the effective reactive palladium(0) species.

The most simple and reasonable explanation consisted in considering that the reactive species is the 14-electron complex $\mathrm{Pd}(\mathrm{DIOP})$, being in equilibrium with the 16 -electron $\mathrm{Pd}(\mathrm{dba})-$ (DIOP) (eq 15, Scheme 1). Note that $\mathrm{Pd}($ DIOP ) is probably

## Scheme 1

$$
\begin{align*}
\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP}) \stackrel{k_{1}}{\stackrel{k_{1}}{\longrightarrow}} & \mathrm{Pd}(\mathrm{DIOP})+\mathrm{dba}  \tag{15}\\
& \mathrm{Phl} \mid k_{2} \\
& \mathrm{PhPdl}(\mathrm{DIOP})
\end{align*}
$$

ligated by the solvent which is omitted in the equation for simplification. In this system $\mathrm{Pd}(\mathrm{DIOP})$ is expected to be the more reactive species because of it being the less ligated one. However, were Pd (DIOP) the only reactive species, $1 / k_{\text {app }}$ should vary linearly with the concentration of dba for a given concentration of PhI (see the Experimental Section). Since this is in contradiction with experimental observations (Figure 5b), we had to consider a more complex sequence, in which both $\mathrm{Pd}(\mathrm{dba})$ (DIOP) and Pd (DIOP) may react with PhI (Scheme 2). ${ }^{24}$

[^8]
## Scheme 2



With the framework of Scheme 2, one has (see the Experimental Section)

$$
\begin{equation*}
k_{\mathrm{app}}=k_{0}[\mathrm{PhI}]+\frac{k_{1} k_{2}[\mathrm{PhI}]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]} \tag{16}
\end{equation*}
$$

When the concentration of dba is low, i.e., when no dba in excess is present, one has

$$
k_{-1}[\mathrm{dba}] \ll k_{2}[\mathrm{PhI}]
$$

Under these conditions, eq 16 simplifies into $k_{\text {app }}=k_{1}+k_{0}-$ [PhI], which is identical to the experimental eq 12. The values of $k_{0}$ and $k_{1}$ could thus be determined:

$$
k_{0}=6 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1} \quad k_{1}=7.5 \times 10^{-3} \mathrm{~s}^{-1}
$$

In a more general case, the expression of $k_{\text {app }}$ in eq 16 can be rewritten as eq 17 , where $k_{0}$ is precisely known from the slope obtained at low dba concentrations (eq 12).

$$
\begin{equation*}
\frac{1}{k_{\mathrm{app}}-k_{0}[\mathrm{PhI}]}=\frac{k_{-1}[\mathrm{dba}]}{k_{1} k_{2}[\mathrm{PhI}]}+\frac{1}{k_{1}} \tag{17}
\end{equation*}
$$

When the ratio $1 /\left(k_{\text {app }}-k_{0}[\mathrm{PhI}]\right)$ was plotted as a function of the ratio [dba]/[PhI], a linear correlation was obtained (Figure $5 b)$. This fact validates our hypothesis concerning the parallel reactivity of the two palladium(0) complexes as postulated in Scheme 2. $k_{1}=7.5 \times 10^{-3} \mathrm{~s}^{-1}$ is obtained from the intercept, and is the same as determined above through an independent method, thereby confirming the mechanism in Scheme 2.

Table 3. Comparative Reactivity of Palladium(0) Complexes with PhI in THF, as a Function of the Ligand and the Precursor

| $[\mathrm{Pd}(0)]=2 \mathrm{mmol} \mathrm{dm}^{-3}$ | $T\left({ }^{\circ} \mathrm{C}\right)$ | $[\mathrm{PhI}]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$ | $t_{1 / 2}(\mathrm{~s})$ | bite angle $\mathrm{P}-\mathrm{Pd}-\mathrm{P}, \theta(\mathrm{deg})$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | 20 | 0.01 | 3.5 |  |
| $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PPh}_{3}$ | 20 | 0.01 | 20 |  |
| $\mathrm{Pd}(\mathrm{dba})_{2}+4 \mathrm{PPh}_{3}$ | 20 | 0.01 | 26 | 34 |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{DIOP}$ | 40 | 0.2 | 110 | 106.4 |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{dppf}$ | 40 | 0.2 | 99.07 |  |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$ | 40 | 0.2 | 9.2 .69 |  |
| $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})^{a}+1 \mathrm{dba}$ | 40 | 0.2 | 16000 |  |
| $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})^{a}$ | 40 | 9700 |  |  |

${ }^{a}$ Isolated complex from the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+1$ BINAP.
Table 4. Comparative Reactivity of Palladium(0) Complexes, Generated in the Mixture $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L}$, with PhI in THF at $40^{\circ} \mathrm{C}$, According to Scheme 3

| $[\mathrm{Pd}(0)]=2 \mathrm{mmol} \mathrm{dm}^{-3}$ | $k_{0}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ | $k_{1}\left(\mathrm{~s}^{-1}\right)$ | $k_{-1}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ | $k_{2}\left(\mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1$ DIOP | $(6.0 \pm 0.1) \times 10^{-2}$ | $(7.5 \pm 0.1) \times 10^{-3}$ | $>200$ | $>40$ | $k_{2} / k_{0}$ |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1$ dppf | $(3.0 \pm 0.1) \times 10^{-2}$ | $(1.0 \pm 0.1) \times 10^{-3}$ | $>30$ | $>600$ |  |
| $\mathrm{Pd}(\mathrm{dba})_{2}+1$ BINAP | $(5.0 \pm 0.1) \times 10^{-3}$ | $(1.5 \pm 0.1) \times 10^{-3}$ | $>40$ | $>1000$ |  |

From the slope we get

$$
\begin{gather*}
\frac{k_{-1}}{k_{1} k_{2}}=650 \mathrm{~s} \text { and then } \frac{k_{-1}}{k_{2}}=4.9 \\
k_{1} / k_{-1}=[\mathrm{Pd}(\mathrm{DIOP})]_{\mathrm{eq}}[\mathrm{dba}]_{\mathrm{eq}} /[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]_{\mathrm{eq}} \tag{18}
\end{gather*}
$$

In the ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ generated in mixtures of $\mathrm{Pd}(\mathrm{dba})_{2}+1$ DIOP, we only observed the signals of $\mathrm{Pd}(\mathrm{dba})$ (DIOP). From this we conclude that equilibrium 15 is considerably shifted to its left-hand side. Under these conditions, the maximum value of the ratio $[\mathrm{Pd}(\mathrm{DIOP})]_{\mathrm{eq}} /[\mathrm{Pd}-$ (dba)(DIOP)] $]_{\text {eq }}$ must be less than $10^{-2}$.

From eq 18, one then obtains $k_{1} / k_{-1} \ll[\mathrm{dba}]_{\mathrm{eq}} / 100$. When dba was not added to the solution, its concentration was 4 mM , showing then that $k_{1} / k_{-1} \ll 4 \times 10^{-5} \mathrm{M}$. Since the value of $k_{1}$ is known, a minimum value of $k_{-1}$ can be estimated:

$$
k_{-1} \gg 200 \mathrm{M}^{-1} \mathrm{~s}^{-1}
$$

From the ratio $k_{-1} / k_{2}$, the minimum value of $k_{2}$ can be estimated: $k_{2} \gg 40 \mathrm{M}^{-1} \mathrm{~s}^{-1}$. Since the value of $k_{0}$ has been determined, this showed that $k_{2} / k_{0} \gg 600$, from which one sees that $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ is at least 600 times less reactive than $\mathrm{Pd}-$ (DIOP).

The values of the rate constants are summarized as follows:

$$
\begin{gathered}
k_{0}=(6 \pm 0.1) \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
k_{1}=(7.5 \pm 0.1) \times 10^{-3} \mathrm{~s}^{-1} \\
k_{-1} \gg 200 \mathrm{M}^{-1} \mathrm{~s}^{-1}, \quad k_{2} \gg 600 k_{0}
\end{gathered}
$$

Therefore, a mixture of $\mathrm{Pd}(\mathrm{dba})_{2}$ and 1DIOP results in the formation of a major complex, $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$. This species is involved in a fast endergonic equilibrium, yielding a free dba and the less ligated complex $\mathrm{Pd}(\mathrm{DIOP})$. This latter species is at least 600 times more reactive in the oxidative addition with PhI than Pd(dba)(DIOP). However, we have established that $\mathrm{Pd}(\mathrm{dba})$ (DIOP) also reacts with PhI. Indeed its lower reactivity is easily compensated by its larger availability in the reaction medium, so that its effective rate of oxidative addition is comparable to that of the much more reactive $\mathrm{Pd}(\mathrm{DIOP})$ species. This contrasts with monodentate ligands such as $\mathrm{PPh}_{3}$. Indeed, in this case, we have demonstrated that the only reactive species was $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ and that $\mathrm{Pd}(\mathrm{dba})\left(\mathrm{PPh}_{3}\right)_{2}$ did not react with PhI , probably due to steric hindrance around the palladium center. ${ }^{2}$

From the comparison of the values of $t_{1 / 2}$, gathered in Table 3, we observe that the catalytic system $\operatorname{Pd}(d b a)_{2}+1$ DIOP is considerably less reactive than $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PPh}_{3}$ at identical concentration.
(b) $\operatorname{Pd}(\mathbf{d b a})_{2}+$ 1BINAP. Similar investigations were undertaken to evaluate the reactivity of the palladium(0) complexes generated in situ in the mixture $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$, with phenyl iodide in THF at $40{ }^{\circ} \mathrm{C}$. Conclusions were essentially the same as for DIOP; i.e., the major complex is $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ which is involved in an equilibrium with dba and the less ligated complex $\operatorname{Pd}(B I N A P)$. The latter is the most reactive species, but $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ also reacts in parallel with PhI, owing to its larger concentration. The values of the corresponding rate constants are collected in Table 4.

Although it is more convenient in a catalytic reaction to start from a mixture of $\operatorname{Pd}(\mathrm{dba})_{2}+1$ BINAP, it was of interest to examine the reactivity of the isolated complex $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ in the oxidative addition with PhI. We thus investigated the reactivity of $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ alone and in the presence of dba ( 1 equiv), which should mimic the mixture $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$. The values of $t_{1 / 2}$ for the oxidative additions performed under the same conditions as for the mixture $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}$ are collected in Table 3. We observed that the reactivity of the isolated complex $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ in the presence of 1dba was the same as that of the mixture $\operatorname{Pd}(\mathrm{dba})_{2}+1$ BINAP. As expected, the isolated complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{BINAP})$ was more reactive when alone in solution than in the presence of 1 equiv of dba. These results confirm the mechanism established in Scheme 2:


Indeed, the isolated complex $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ is more reactive alone than in the presence of 1 equiv of dba, because in the former case, the concentration of dba is smaller and thus the equilibrium is more shifted to its right-hand side. Under these conditions, the concentration of the most reactive species Pd(BINAP) increases and the overall reactivity is enhanced. From the value of $t_{1 / 2}$ (Table 3), we observe that the system $\operatorname{Pd}(\mathrm{dba})_{2}$ + 1BINAP is considerably less reactive than $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{DIOP}$ (see further discussion).
(c) $\mathbf{P d}(\mathbf{d b a})_{2}+\mathbf{1 d p p f}$. The major complex $\operatorname{Pd}(\mathrm{dba})(\mathrm{dppf})$ was found to be involved in a fast endergonic equilibrium with dba and the most reactive complex $\mathrm{Pd}(\mathrm{dppf})$. The kinetic data
are collected in Tables 3 and $4^{25}$ and compared to those obtained with BINAP and DIOP (see further discussion).
III. Final Discussion and Conclusion. Complementary use of ${ }^{31} \mathrm{P}$ NMR spectroscopy and voltammetry proved essential in the investigation of the mechanism of oxidative addition of palladium(0) complexes generated in situ from mixtures of Pd$(\mathrm{dba})_{2}$ and bidentate ligands. Indeed, voltammetry allowed a fine investigation of the mechanistic features but lacked the structural information which could only be provided by ${ }^{31} \mathrm{P}$ NMR spectroscopy. Conversely ${ }^{31} \mathrm{P}$ NMR did not allow a fine investigation of the kinetics at hand, which only could be provided by voltammetry.

Mixtures of $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{~L}-\mathrm{L}$ afford the complex $\mathrm{Pd}(\mathrm{L}-\mathrm{L})_{2}$, except for BINAP. The rate of formation of $\mathrm{Pd}(\mathrm{L}-\mathrm{L})_{2}$ obeys the order DIOP $>$ dppf $\gg$ BINAP and thus is higher when the bite angle is higher $\left(\theta(\text { DIOP })^{5 c, 26}>\theta(\mathrm{dppf})^{27}>\theta(\text { (INAP })^{18}\right)$, evidence that this factor is not kinetically predominant.

Whatever the bidentate phosphine ligand investigated, mixtures of $\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L}$ always afford the complex $\mathrm{Pd}(\mathrm{dba})-$ (L-L) as the major species, directly (with dppf and BINAP) or through the intermediate $\operatorname{Pd}(\mathrm{L}-\mathrm{L})_{2}$ when the latter can be rapidly formed (DIOP, dppm, dppe, dppp, and dppb). In this later case, it is worth recognizing that since $\operatorname{Pd}(\mathrm{L}-\mathrm{L})_{2}$ does not react with PhI , the reactive species prone to react with PhI are not present at the beginning of the reaction. In this respect, it is important to note that, for example, about 4 h at $20^{\circ} \mathrm{C}$ or 2 h at $40^{\circ} \mathrm{C}$ is required for quantitative formation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$.
$\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ is involved in an endergonic equilibrium (eq $15^{\prime}$ ), releasing dba and the very reactive $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ species. Albeit the latter is intrinsically much more reactive than $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-$ L ), the direct oxidative addition to $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ cannot be overload since the intrinsic reactivities of the two species are partly compensated by their actual available concentrations (Scheme 3).

## Scheme 3



From the values of $t_{1 / 2}$ gathered in Table 3, one observes that whatever the bidentate ligand, the catalytic system $\mathrm{Pd}(\mathrm{dba})_{2}$ $+1 \mathrm{~L}-\mathrm{L}$ is considerably less reactive than $\mathrm{Pd}(\mathrm{dba})_{2}+2 \mathrm{PPh}_{3}$. In all cases, the most reactive species is formed via endergonic equilibrium. The pertinent equilibrium constants could not be determined and therefore could not be compared. It is thus impossible to compare the intrinsic reactivity of $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$ with that of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$. In other words, one cannot decide whether the lower reactivity of $\operatorname{Pd}(\mathrm{dba})_{2}+1 \mathrm{~L}-\mathrm{L}$ is due to a lower
(25) The isolated complex $\operatorname{Pd}(d b a)(d p p f)$ was characterized by UV spectroscopy, in THF ( $\lambda_{\max }=386 \mathrm{~nm}$ ) and in toluene ( $\lambda_{\text {max }}=393 \mathrm{~nm}, \epsilon$ $=10760 \mathrm{~mol}^{-1} \mathrm{~cm}^{2}$ ) at $25^{\circ} \mathrm{C}$. When THF was progressively added to the complex $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})$ in solution in toluene, one observed a decay of the absorbance of $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})$ until a constant value obtained after addition of $16 \%$ of THF in volume. We do not know whether toluene was able to ligate $\mathrm{Pd}(\mathrm{dppf})$ or not, but it seems that THF coordinates the complex Pd(dppf) to afford $\operatorname{Pd}(\mathrm{dppf})(\mathrm{THF})$, resulting in a decay of the initial concentration of $\operatorname{Pd}(\mathrm{dba})(\mathrm{dppf})$. From the $\epsilon$ value for $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})$, determined above in toluene, one knows $[\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})]_{\mathrm{eq}}$ and then $[\mathrm{Pd}-$ $(\mathrm{dppf})(\mathrm{THF})]_{\text {eq }}$ by the difference from the initial concentration. Therefore, the value of the following equilibrium constant was determined in toluene: $\mathrm{Pd}(\mathrm{dba})(\mathrm{dppf})+\mathrm{THF} \rightleftarrows \mathrm{Pd}(\mathrm{dppf})(\mathrm{THF})+\mathrm{dba}\left(K=8 \times 10^{-5}\right)$.
(26) The bite angle was determined in the complex $\left(\mathrm{CH}_{2}=\mathrm{CH}_{2}\right) \mathrm{Pd}(\mathrm{DIOP}) .{ }^{6 \mathrm{c}}$ To our knowledge, the bite angle in the complex $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{DIOP})$ is not reported as it is for $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{dppf})^{27}$ and $\mathrm{Cl}_{2} \mathrm{Pd}(\mathrm{BINAP}){ }^{18}$
(27) Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158.
intrinsic reactivity of $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$ or arises from a concentration effect due to a smaller value of the equilibrium constant which imposes a lower steady state concentration of the reactive species $\operatorname{Pd}(L-L)$.

By comparing the three bidentate ligands investigated in this work (Table 3), one sees that their respective reactivity in the oxidative addition with phenyl iodide obeys the following order:

$$
\begin{aligned}
& \mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{DIOP}>\mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{dppf}> \\
& \mathrm{Pd}(\mathrm{dba})_{2}+1 \mathrm{BINAP}
\end{aligned}
$$

Since the oxidative addition to $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ is preceded by an equilibrium (Scheme 3), one has to take into account the influence of the ligand, both on the equilibrium constant $K_{1}$ and on the intrinsic rate constants of the oxidative addition to $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$. For monodentate ligands, it is generally considered and also established ${ }^{10,28}$ that the oxidative addition is favored by basic ligands (electronic effects) and by ligands possessing a small cone angle (steric effects). For bidentate ligands, it is also considered that the oxidative addition is favored by basic ligands and by ligands possessing a small bite angle.

Although to our knowledge no data concerning the basicity of the bidentate ligands are available from the literature, one expects the following order for their basicity: ${ }^{29}$

$$
\text { DIOP }>\text { dppf }>\text { BINAP }
$$

From our results (Table 3), we deduce that the rate of the overall reaction follows the order of basicity of the ligands: the more basic the ligand, the faster the overall reaction.

The bite angles follow the order $\theta(\mathrm{DIOP})>\theta(\mathrm{dppf})>\theta$ (BINAP). Therefore, the higher the bite angle, the faster the overall reaction. This is an unexpected reverse order. In fact, the rate of the overall reaction is governed by two factors: (i) the value of the intrinsic rate constant $k_{2}$ of the oxidative addition (which is expected to increase when the basicity of the ligand increases) and (ii) the concentration of the reactive species Pd-(L-L) (which is determined by the value of the equilibrium constant $K_{1}$ ). When the bite angle is high, equilibrium $15^{\prime}$ is probably more shifted to its right-hand side because the complex $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ is less sterically hindered than $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$. Thus, the concentration of the reactive species $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ should be higher when the bite angle is larger. Therefore, even if the effect of high bite angles is also to decrease the intrinsic rate of the oxidative addition to $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$, such a negative effect is certainly more than compensated for by the fact that the concentration of $\operatorname{Pd}(\mathrm{L}-\mathrm{L})$ is higher for complexes possessing a high bite angle.

Therefore, we observe that whatever the ligand, monodentate (L) or bidentate (L-L), the dba ligand plays a crucial role, in contradiction with the usual belief, since it is always involved in the major and less reactive complex $\operatorname{Pd}(\mathrm{dba}) \mathrm{L}_{2}$ or $\operatorname{Pd}(\mathrm{dba})$ -(L-L). The presence of these stable complexes diminishes the concentration of the more reactive species $\mathrm{PdL}_{2}$ or $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$ and consequently controls the apparent rate of the overall reaction. Moreover, in the case of bidentate ligands, we established here that $\mathrm{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ complexes also react with PhI . It is also important to note that an increase of the concentration of dba

[^9](which may for example arise from an increase of $\mathrm{Pd}(\mathrm{dba})_{2}$ concentration in catalytic conditions) results in a shift of equilibrium $15^{\prime}$ to the formation of the less reactive species Pd-(dba)(L-L). In the case of chiral chelating diphosphines, the spatial environment in $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$ is expected to be different from that in $\mathrm{Pd}(\mathrm{L}-\mathrm{L})$ because of the monoligation of dba in $\operatorname{Pd}(\mathrm{dba})(\mathrm{L}-\mathrm{L})$. Therefore, starting from a prochiral organic derivative, the potential asymmetric induction could then differ from one complex to another, showing that the overall asymmetric induction might vary with the experimental conditions, particularly with the concentration of $\operatorname{Pd}(\mathrm{dba})_{2}$ and of course with the relative concentration of the dba and bisphosphine ligands.

## Experimental Section

${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker spectrometer $(162 \mathrm{MHz})$ using $\mathrm{H}_{3} \mathrm{PO}_{4}$ as an external reference. All experiments were performed under argon and at controlled temperature. UV spectroscopy was recorded on a Beckman DU 7400 spectrometer.

Chemicals. THF was distilled on sodium-benzophenone. Iodobenzene was from a commercial source (Aldrich) and used after filtration on alumina. Bidentate phosphines, dppm, dppe, dppp, dppb, $(+)$ DIOP, dppf, and $(-)$-BINAP, were also from a commercial source (Aldrich). $\mathrm{Pd}(\mathrm{dba})_{2}$ was synthesized according to published procedures. ${ }^{30}$

Electrochemical Setup and Electrochemical Procedure for Cyclic Voltammetry. Cyclic voltammetry was performed as previously described in ref 2. Typical procedure: investigation by cyclic voltammetry of the mixture of $\operatorname{Pd}(\mathrm{dba})_{2}$ and 1DIOP in THF. To 15 mL of anhydrous THF containing $n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}\left(0.3 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$ was added $17 \mathrm{mg}(0.03 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{dba})_{2}$ followed by $15 \mathrm{mg}(0.03 \mathrm{mmol})$ of DIOP. The formation of $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$ was monitored by performing cyclic voltammetry as a function of time. When the formation of Pd(dba)(DIOP) was completed as attested by the absence of the reduction peak $\mathrm{R}_{0}$ of $\mathrm{Pd}(\mathrm{dba})_{2}$, the rotating gold disk electrode was polarized at +0.06 V on the plateau of the oxidation wave of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ and the decay of the oxidation current was recorded as a function of time after addition of $17 \mu \mathrm{~L}(0.15 \mathrm{mmol})$ of phenyl iodide. At the end of the oxidative addition, the value of the residual oxidation current was about $5 \%$ of its initial value.

Derivation of the Rate Law Corresponding to Scheme 1. Since $\operatorname{Pd}($ DIOP $)$ could not be observed, it has to obey the steady state

[^10]approximation
\[

$$
\begin{aligned}
\mathrm{d}[\mathrm{Pd}(\mathrm{DIOP})] / \mathrm{d} t=k_{1}[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]- & \left(k_{-1}[\mathrm{dba}]+\right. \\
& \left.k_{2}[\mathrm{PhI}]\right)[\mathrm{Pd}(\mathrm{DIOP})]=0
\end{aligned}
$$
\]

from which it follows that

$$
[\mathrm{Pd}(\mathrm{DIOP})]=\frac{k[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]}
$$

Thus, the overall rate is obtained as follows:

$$
\begin{array}{r}
v=k_{2}[\mathrm{PhI}][\mathrm{Pd}(\mathrm{DIOP})]=k_{2}[\mathrm{PhI}] \frac{k_{1}[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]}= \\
k_{\mathrm{app}}[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]
\end{array}
$$

with

$$
k_{\mathrm{app}}=\frac{k_{1} k_{2}[\mathrm{PhI}]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]}
$$

Derivation of the Rate Law Corresponding to Scheme 2. The overall rate is now given by

$$
v=k_{0}[\mathrm{PhI}][\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]+k_{2}[\mathrm{PhI}][\mathrm{Pd}(\mathrm{DIOP})]
$$

which, still considering the steady state approximation for $\operatorname{Pd}(D I O P)$, affords

$$
\begin{array}{r}
v=k_{0}[\mathrm{PhI}][\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]+k_{2}[\mathrm{PhI}] \frac{k_{1}[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]}= \\
k_{\mathrm{app}}[\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})]
\end{array}
$$

with

$$
k_{\mathrm{app}}=k_{0}[\mathrm{PhI}]+\frac{k_{1} k_{2}[\mathrm{PhI}]}{k_{-1}[\mathrm{dba}]+k_{2}[\mathrm{PhI}]}
$$

Acknowledgment. This work has been supported in part by the Centre National de la Recherche Scientifique (CNRS, URA 1679, "Processus d'Activation Moléculaire") and the Ministère de l'Enseignement Supérieur et de la Recherche (Ecole Normale Supérieure). A Chateaubriand, postdoctoral grant from the French Ministère des Affaires Etrangères to G.B. is also greatly acknowledged. This paper is dedicated to Professor H. Schäfer on the occasion of his 60th birthday.

JA9637098


[^0]:    * To whom correspondence should be addressed.
    $\dagger$ URA CNRS 1679.
    ${ }^{\ddagger}$ Université Sidi Mohammed Ben Abdellah.
    ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1997.
    (1) For the use of $\operatorname{Pd}(\mathrm{dba})_{2}$ with monodentate ligands, see ref 11 in ref 2.
    (2) Amatore, C.; Jutand, A.; Khalil, F.; M’Barki, M. A.; Mottier, L. Organometallics 1993, 12, 3168.

[^1]:    (3) (a) Fiaud, J. C.; Malleron, J. L. Tetrahedron Lett. 1980, 21, 4437. (b) Fiaud, J. C.; Malleron, J. L. J. Chem. Soc., Chem. Commun. 1981, 1159. (c) Ahmar, M.; Cazes, B.; Goré, J. Tetrahedron Lett. 1984, 25, 4505. (d) Ahmar, M.; Cazes, B.; Goré, J. Tetrahedron Lett. 1985, 26, 3795. (e) Rajanbabu, T. V. J. Org. Chem. 1985, 50, 3642. (f) Fiaud, J. C.; Legros, J. Y. J. Org. Chem. 1987, 52, 1907. (g) Bäckwall, J. E.; Vagberg, J. E.; Zercher, C.; Genêt, J. P.; Denis, A. J. Org. Chem. 1987, 52, 5430. (h) Genêt, J. P.; Uziel, J.; Jugé, S. Tetrahedron Lett. 1988, 29, 4559. (i) Fournet, G.; Balme, G.; Barrieux, J. J.; Goré, J. Tetrahedron 1988, 44, 5821 . (j) Lin, I. J. B.; Alper, H. J. Chem. Soc., Chem. Commun. 1989, 248. (k) Susuki, O.; Inoue, S.; Sato, K. Bull. Chem. Soc. Jpn. 1989, 62, 239. (1) Fiaud, J. C.; Legros, J. Y. J. Organomet. Chem. 1989, 370, 383. (m) El Ali, B.; Alper, H. J. Org. Chem. 1991, 56, 5357.
    (4) (a) Fiaud, J. C.; Hibon de Gournay, A.; Larchevêque, M.; Kagan, H. B. J. Organomet. Chem. 1978, 154, 175. (b) Fiaud, J. C.; Malleron, J. L. Tetrahedron Lett. 1981, 22, 1399. (c) Fiaud, J. C.; Denner, B.; Malleron, J. L. J. Organomet. Chem. 1985, 291, 393. (d) Fiaud, J. C.; AribiZouioueche, L. J. Organomet. Chem. 1985, 295, 383. (e) Genêt, J. P.; Jugé, S.; Ruiz Montés, J.; Gaudin, J. M. J. Chem. Soc., Chem. Commun. 1988, 718. (f) Arzoumanian, H.; Buono, G.; Choukrad, M.; Petrigliani, J. F. Organometallics 1988, 7, 59. (g) Genêt, J. P.; Jugé, S.; Achi, S.; Mallart, S.; Ruiz Montés, J.; Levif, G. Tetrahedron 1988, 44, 5263. (h) Arzoumanian, H.; Choukrad, M.; Nuel, D. J. Mol. Catal. 1993, 85, 287.
    (5) (a) Genêt, J. P.; Férroud, D.; Jugé, S.; Ruiz Montès, J. Tetrahedron Lett. 1986, 27, 4573. (b) Fiaud, J. C.; Legros, J. Y. Tetrahedron Lett. 1988, 29, 2959. (c) Hodgson, M.; Parker, D.; Taylor, R. J.; Ferguson, G. Organometallics 1988, 7, 1761. (d) Fiaud, J. C.; Legros, J. Y. J. Org. Chem. 1990, 55, 4840. (e) Gil, R.; Fiaud, J. C. Bull. Soc. Chim. Fr. 1994, 131, 584. (f) Legros, J. Y.; Toffano, M.; Fiaud, J. C. Tetrahedron Asymmetry 1995, 6, 1899. (g) Dani, P.; Dupont, J.; Monteiro, A. L. J. Braz. Chem. Soc. 1996, 7, 15.
    (6) (a) Stolle, A.; Salaun, J.; De Meijere, A. Synlett. 1991, 5, 327. (b) Stolle, A.; Ollivier, J.; Piras, P. P.; Salaun, J.; De Meijere, A. J. Am. Chem. Soc. 1992, 114, 4051. (c) McGaffin, G.; Michalski, S.; Stolle, A.; Braese, S.; Salaun, J.; De Meijere, A. Synlett. 1992, 7, 558. (d) Legros, J. Y.; Fiaud, J. C. Tetrahedron 1994, 50, 465.

[^2]:    (7) In other words, the first dba ligand is easily exchanged by two phosphine ligands, while the second one is hard to remove. We ascribe this result, surprising at first glance, to a conflict between electronic and steric requirements. Thus, in our view, one dba and two phosphine ligands appear to be the best compromise between electronic factors (which would lead to exchange of the second dba by the third phosphine) and steric constraints (which oppose this exchange).
    (8) Khalil, F. Ph.D. Thesis, University Paris VI, 1993.
    (9) Amatore, C.; Azzabi, M.; Jutand, A. J. Am. Chem. Soc. 1991, 113, 1670.
    (10) Amatore, C.; Carré, E.; Jutand, A.; M’Barki, M. A. Organometallics 1995, 14, 1818.

[^3]:    (11) For the synthesis and characterization of $\mathrm{Pd}(\mathrm{DIOP})_{2}$, see: Elmes, P. S.; Jackson, W. R. Aust. J. Chem. 1982, 35, 2041.
    (12) The ratio $i / V^{1 / 2}\left(i=\right.$ reduction current of $\mathrm{R}_{1}, \mathrm{~V}=$ scan rate $)$ did not vary with the scan rate. This means that the peak current of $R_{2}$ exactly corresponds to the concentration of free dba in solution and not to a dynamic concentration due to an eventual equilibrium of dba and a palladium(0) complex as observed for $\mathrm{PPh}_{3}$. ${ }^{2}$

[^4]:    (13) (a) The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathrm{PhPdI}(D I O P)$ was identical to that obtained after substitution of $\mathrm{PPh}_{3}$ from $\operatorname{PhPdI}\left(\mathrm{PPh}_{3}\right)_{2}$ by 1 equiv of DIOP and to that reported by De Graaf, W.; Boersma, J.; Van Koten, G.; Elsevier, C. J. J. Organomet. Chem. 1989, 378, 115. (b) Although the yield of PhPdI(DIOP) could not be precisely quantified, it was observed in the ${ }^{31} \mathrm{P}$ NMR spectrum that the two signals characteristic of $\operatorname{Pd}(\mathrm{dba})(\mathrm{DIOP})$ completely disappeared in the presence of phenyl iodide and that the two signals of $\mathrm{PhPdI}(\mathrm{DIOP})$ were detected without any other signals that could characterize a byproduct bearing a phosphine ligand. We are thus inclined to conclude that the yield of the oxidative addition is quantitative.

[^5]:    (14) When alone in solution, the complex $\operatorname{Pd}(\mathrm{dba})_{2}$ is mainly present as $\operatorname{Pd}(\mathrm{dba})$ since 1 equiv of the free dba ligand is always detected in ${ }^{1} \mathrm{H}$ NMR spectroscopy. Since this species is unsaturated ( 14 electrons), it probably aggregates. The external part of these aggregates should only be accessible for the reaction with DIOP which is therefore always in high concentration relative to the reactive $\mathrm{Pd}(\mathrm{dba})$ at the interface. We believe this is the reason why $\mathrm{Pd}(\mathrm{DIOP})_{2}$, the kinetic product, was mainly produced at the beginning of the reaction. However, investigation of this initial mechanism was impossible because the formation of $\mathrm{Pd}(\mathrm{DIOP})_{2}$ was complete $\left(t_{1 / 2}<5\right.$ $\min$ ) before ${ }^{31} \mathrm{P}$ NMR spectroscopy or cyclic voltammetry could be performed.
    (15) It is already reported that $\mathrm{Pd}(\mathrm{dppe})_{2}$ does not react with aryl iodides; see: Fitton, P.; Rick, E. A. J. Organomet. Chem. 1971, 28, 287.
    (16) Similar behavior concerning the dppe ligand has been observed: (a) Fiaud, J. C.; Legros, J. Y. Unpublished results, private communication, Paris, 1991. (b) Legros, J. Y. Ph.D. Thesis, University Paris 11, Orsay, 1988.
    (17) (a) Herrmann, W. A.; Thiel, W. R.; Brossmer, C.; Öfele, K.; Priermeier, T.; Scherer, W. J. Organomet. Chem. 1993, 461, 51. (b) Herrmann, W. A.; Brossmer, C.; Priermeier, T.; Öfele, K. J. Organomet. Chem. 1994, 481, 97.

[^6]:    (18) The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{PhPdI}(\mathrm{BINAP})$ was identical to that obtained after substitution of $\mathrm{PPh}_{3}$ from $\operatorname{PhPdI}\left(\mathrm{PPh}_{3}\right)_{2}$ by 1 equiv of BINAP.
    (19) (a) For the synthesis and characterization of $\operatorname{Pd}(\text { BINAP })_{2}$, see: Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T. Nishioka, E.; Yanagi, K.; Moriguchi, K.-I. Organometallics 1993, 12, 4188. (b) For the isolation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{BINAP})$ as an orange powder, from a mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and BINAP, see: Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 7215.
    (20) The first dba ligand is easily exchanged by one bidentate ligand, while the second one is hard to remove. We ascribe this result to a conflict between electronic and steric requirements, as for $\mathrm{PPh}_{3}$; see ref 7 .

[^7]:    (21) Fang, Z.-G.; Low, M. N.; Ng, S.-C.; Hor, A. J. Organomet. Chem. 1994, 483, 17.
    (22) Although complexes $\mathrm{Pd}(\mathrm{L}-\mathrm{L})_{2}$ do not react with PhI , they can activate other organic substrates such as allylic acetates. ${ }^{3}$ The reaction probably proceeds by substitution of one bidentate ligand L-L by the double bond of the allylic acetate.

[^8]:    (24) $\operatorname{Pd}($ dba $)($ DIOP $)$ is stable in solution under argon for at least one night. Its stability has been controlled by performing ${ }^{31} \mathrm{P}$ NMR spectroscopy. As one can see in Table 3, the half time of the oxidative addition with phenyl iodide is rather small, and no degradation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ can occur during this short time. Thus, a degradation of $\mathrm{Pd}(\mathrm{dba})(\mathrm{DIOP})$ could not be invoked to explain the nonproportionality to PhI (rate law in eq 12 and intercept different from 0 , Figure $4 b$ ).

[^9]:    (28) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434.
    (29) The ligand DIOP is undoubtedly more basic than dppf and BINAP. Concerning the comparative basicity of dppf and BINAP, we have observed by ${ }^{31} \mathrm{P}$ NMR spectroscopy that when $\operatorname{PhPdI}\left(\mathrm{PPh}_{3}\right)_{2}$ was added to a solution containing 1 equiv of dppf and 1 equiv of BINAP in THF, the resulting complex was PdPdI(dppf). A 2 equiv portion of $\mathrm{PPh}_{3}$ was released in solution, and the BINAP was detected as the free ligand. In another experiment, we observed that the complexation of $\mathrm{PdCl}_{2}$ by dppf was faster than that by BINAP. Therefore, we conclude that dppf is more basic than BINAP. Note that we are considering here relative kinetic basicities and not thermodynamic basicities.

[^10]:    (30) (a) Takahashi, Y.; Ito, T.; Sakai, S.; Ishii, Y. J. Chem. Soc. D 1970 , 1065. (b) Rettig, M. F.; Maitlis, P. M. Inorg. Synth. 1977, 17, 134.

